Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose.
نویسندگان
چکیده
Fasting increases neuropeptide Y (NPY) expression, peptide levels, and the excitability of NPY-expressing neurons in the hypothalamic arcuate (ARC) nucleus. A subpopulation of ARC-NPY neurons ( approximately 40%) are glucose-inhibited (GI)-type glucose-sensing neurons. Hence, they depolarize in response to decreased glucose. Because fasting enhances NPY neurotransmission, we propose that during fasting, GI neurons depolarize in response to smaller decreases in glucose. This increased excitation in response to glucose decreases would increase NPY-GI neuronal excitability and enhance NPY neurotransmission. Using an in vitro hypothalamic explant system, we show that fasting enhances NPY release in response to decreased glucose concentration. By measuring relative changes in membrane potential using a membrane potential-sensitive dye, we demonstrate that during fasting, a smaller decrease in glucose depolarizes NPY-GI neurons. Furthermore, incubation in low (0.7 mM) glucose enhanced while leptin (10 nM) blocked depolarization of GI neurons in response to decreased glucose. Fasting, leptin, and glucose-induced changes in NPY-GI neuron glucose sensing were mediated by 5'-AMP-activated protein kinase (AMPK). We conclude that during energy sufficiency, leptin reduces the ability of NPY-GI neurons to sense decreased glucose. However, after a fast, decreased leptin and glucose activate AMPK in NPY-GI neurons. As a result, NPY-GI neurons become depolarized in response to smaller glucose fluctuations. Increased excitation of NPY-GI neurons enhances NPY release. NPY, in turn, shifts energy homeostasis toward increased food intake and decreased energy expenditure to restore energy balance.
منابع مشابه
Title: Fasting Enhances the Response of Arcuate Neuropeptide Y (npy)-glucose-inhibited Abbreviated Title: Fasting Modulates Glucose Responses in Npy Neurons
Fasting increases neuropeptide Y (NPY) expression, peptide levels and the excitability of NPY-expressing neurons in the hypothalamic arcuate (ARC) nucleus. A subpopulation of ARC-NPY neurons (~ 40%) are glucose-inhibited (GI)-type glucose sensing neurons. Hence, they depolarize in response to decreased glucose. Because fasting enhances NPY neurotransmission, we propose that during fasting GI ne...
متن کاملCharacterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks?
Four types of responses to glucose changes have been described in the arcuate nucleus (ARC): excitation or inhibition by low glucose concentrations <5 mmol/l (glucose-excited and -inhibited neurons) and by high glucose concentrations >5 mmol/l (high glucose-excited and -inhibited neurons). However, the ability of the same ARC neuron to detect low and high glucose concentrations has never been i...
متن کاملThe regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides.
Glucosensing neurons in the hypothalamic arcuate nucleus (ARC) were studied using electrophysiological and immunocytochemical techniques in neonatal male Sprague-Dawley rats. We identified glucose-excited and -inhibited neurons, which increase and decrease, respectively, their action potential frequency (APF) as extracellular glucose levels increase throughout the physiological range. Glucose-i...
متن کاملArcuate Na+,K+-ATPase senses systemic energy states and regulates feeding behavior through glucose-inhibited neurons.
Feeding is regulated by perception in the hypothalamus, particularly the first-order arcuate nucleus (ARC) neurons, of the body's energy state. However, the cellular device for converting energy states to the activity of critical neurons in ARC is less defined. We here show that Na(+),K(+)-ATPase (NKA) in ARC senses energy states to regulate feeding. Fasting-induced systemic ghrelin rise and gl...
متن کاملDifferential effects of central leptin, insulin, or glucose administration during fasting on the hypothalamic-pituitary-thyroid axis and feeding-related neurons in the arcuate nucleus.
The reductions in circulating levels of leptin, insulin, and glucose with fasting serve as important homeostasis signals to neurons of the hypothalamic arcuate nucleus that synthesize neuropeptide Y (NPY)/agouti-related protein (AGRP) and alpha-MSH/cocaine and amphetamine-regulated transcript. Because the central administration of leptin is capable of preventing the inhibitory effects of fastin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 296 4 شماره
صفحات -
تاریخ انتشار 2009